Pics parasites en chromatographie liquide

Citation

Dans le dernier  LC/GC Europe (volmue 26 – numéro 8 – août 2013), John W. Dolan publie un article sur les pics fantômes en HPLC et passe en revue plusieurs sources potentielles de pics parasites dans les gradients d’élution.

Fig 1

L’eau et les tampons de la phase mobile sont décrits comme les vecteurs principaux de la contamination. Les traces de contaminants se concentrent sur la colonne puis sont élués lors de la montée du gradient.
Pour confirmer cette hypothèse, l’auteur présente deux chromatogrammes correspondant à l’injection d’un blanc après des temps d’équilibration de 10 et 30 minutes. Il apparaît clairement que la concentration en contaminant augmente avec le temps d’équilibration.

Continuer la lecture

UHPLC: Quelle économie pour le Laboratoire?

Citation

Agilent nous livre ici le témoignage du Dr. Vogelsanger (Nitrochemie AG, Wimmis, Switzerland) sur son expérience de la mise en place d’un système UHPLC dans son laboratoire.
Agilent-HPLC-1100Au delà du caractère très promotionnel de cette note dont les conclusions peuvent aisément s’étendre à des matériels concurrents, je retiens l’intérêt d’une analyse économique qui évalue le gain pour son laboratoire à 95000 dollars par an.
La principale source d’économie est attribuée à la capacité de substitution des machines HPLC classiques  par un système UHPLC.
La proportion de 5 (HPLC) pour 1 (UHPLC) citée dans la note s’applique sans doute à des analyses de routine. Elle parait assez élevée et ne correspond pas forcement au taux de conversion que peut espérer un laboratoire de développement.
Notre expérience d’utilisateur d’UHPLC en développement, nous amène à privilégier la réduction du temps d’analyse et l’économie de solvant dans notre réflexion économique. Parallèlement l’augmentation des performances chromatographiques et le gain de sensibilité qui en découle apportent, bien sûr, un intérêt technique important à l’UHPLC.

Cette note très intéressante est un bon argumentaire économique pour équiper les laboratoires de contrôle.  Pour compléter cette étude, il conviendrait d’établir les coûts comparatifs de la maintenance et des consommables (colonnes, systèmes de filtration…) sur un matériel qui traite un nombre d’analyse 5 fois plus important que les HPLC qu’il remplace.

Access Agilent eNewsletter, September 2013 | Agilent.

Nanochemiscope 3D : quand l’analyse chimique descend à l’échelle nanométrique

Citation

See on Scoop.itAnalyses Physico-chimiques

… Sur le principe, rien de très neuf, car le NanoChemiscope est la réunion de deux techniques existantes. D’un côté, le microscope à force atomique (AFM) révèle la topographie d’une surface quasiment jusqu’à l’échelle des atomes, et peut aussi mesurer des propriétés électriques ou mécaniques locales. De l’autre, la technique de spectrométrie de masse dite ToF-SIMS est déjà utilisée pour analyser avec précision la composition d’une surface. Dans ce cas, pourquoi ne pas utiliser successivement les deux techniques sur le même échantillon ? « En passant d’un instrument à l’autre, on a pratiquement aucune chance d’observer la même zone de quelques microns sur l’échantillon. En intégrant les deux techniques dans le même instrument, on peut s’assurer que l’on analyse bien la même zone, à quelques dizaines de nanomètres près »…

See on www.usinenouvelle.com

Colonnes Core-shell: une offre pléthorique ! (2)

Depuis la parution de notre post du 4.06.2012 , un certain nombre de nouveautés sont venues  grossir les rangs des colonnes Core-shell ou noyaux durs que l’on peut trouver chez de nombreux fournisseurs. Pour essayer d’y voir un peu plus clair sur l’ensemble de l’offre et faciliter les comparaisons, nous avons mis à jour le recensement des fournisseurs, noms commerciaux, granulométries, types de phase et dimensions.

fabricants core-shell-2Grand absent du monde des colonnes à noyaux durs, Waters est enfin rentré dans la danse en proposant ses Core-shell : les Cortecs®.
Waters a fait le choix de la performance en ne proposant que des colonnes de granulométrie 1,6µm. L’HPLC est donc totalement mise de côté, en effet, ces colonnes ne pourront pas être utilisés sur des systèmes haute pression classiques. Seuls les détenteurs de systèmes ultra-haute pression (UHPLC) pourront utiliser les Cortecs. Jusqu’à présent, seul Phenomenex proposait des colonnes à noyaux durs sub-2µm. Pour le moment, 3 greffages sont disponibles chez Waters (C18, C18+ pour la séparation de composés basiques et Hilic).

Continuer la lecture

Effet de la pression et de la température sur la séparation d’haloéthanes en SFC (Supercritical Fluid Chromatography)

En SFC, l’état physique du CO2 supercritique, et en particulier sa masse volumique, a une influence sur sa polarité et donc sur la rétention des composés [1].

Pour moduler cette polarité, il convient de faire varier la pression et/ou la température du fluide. Lorsque la masse volumique décroit (donc que la pression diminue), le facteur de capacité (caractérisant la rétention) augmente. Ce phénomène est indépendant de la nature du soluté et de la phase stationnaire, il peut s’expliquer essentiellement par la variation des interactions soluté-phase mobile [2].
Lors d’un précédent post (16 mai 2013), nous avons présenté des résultats obtenus sur la séparation de 2 composés génotoxiques : le 1,2-dibromoéthane et 1-bromo-2-chloroéthane dans des conditions fixes de température (65°C) et de pression (2000 psi).

Pour évaluer l’effet de la pression et de la température sur la séparation de ces composés, nous avons fait varier la pression de sortie du CO2 (de 1500 psi à 3500 psi) en condition isotherme (65°C), puis la température de colonne (de 15°C à 75°C) en condition isobare (2000 psi). L’étude se déroule sur un appareil UPC²™ de Waters®.

Continuer la lecture