Revue de l’état de l’art sur l’utilisation de la chromatographie supercritique (SFC) analytique moderne

Dans l’article “Modern analytical supercritical fluid chromatography using columns packed with sub-2 µm particles : A tutorial”  paru dans la revue Analytica Chimica Acta (824 (2014) 18-35), Lucie Nováková, Alexandre Grand-Guillaume Perrenoud, Isabelle Francois, Caroline West, Eric Lesellier et Davy Guillarme donnent une vue d’ensemble très intéressante des possibilités, limitations et conditions analytiques de la SFC moderne. Nous vous présentons ici un résumé de cet article complété par nos observations d’utilisateurs de cette technique.

La chromatographie par fluide supercritique longtemps utilisée pour quelques applications très spécifiques, comme la séparation d’énantiomères, est aujourd’hui revenue sur le devant de la scène grâce à l’arrivée d’une nouvelle génération d’instruments (nouvelle pompe BPR et UHPLC) et à une multitude de combinaisons possibles entre le solvant de dilution, les colonnes (type et géométrie), le co-solvant (type et pourcentage), la température, le débit, …                            

UPC watersLes auteurs nous présentent deux systèmes appartenant à la nouvelle génération d’instrument SFC : l’ACQUITY UltraPerfromance Convergence Chromatography (UPC2) de Waters (2012) et le 1260 Infinity Hybrid SFC/UHPLC system d’Agilent Technologies (2010) qui sont aujourd’hui en compétition. Comme son nom l’indique le système d’Agilent est « hybride » et permet de basculer grâce à un système de valve de la SFC à l’UHPLC alors que l’instrument Waters est totalement dédié à la SFC. Les différences notables entre le système Waters et celui d’Agilent sont la pression et le débit maximal respectivement de 413 bar et 4 mL/min  et de 600 bar et 5 mL/min, la pression maximale nous semble être un facteur à améliorer sur les prochaines générations d’instruments.

SFC agilentLes auteurs nous rappellent que l’utilisation du CO2 comme phase mobile peut présenter des difficultés d’élution pour les composés polaires et de haut poids moléculaire. Afin d’augmenter le pouvoir solvant de la phase mobile et de favoriser la solubilité de ces composés, plusieurs co-solvants peuvent être utilisés.  Le méthanol est le co-solvant le plus courant pour l’élution des composés polaires. Plus généralement les alcools (caractère donneur d’hydrogène) sont des co-solvants de première intention car ils permettent une grande efficacité sans trop dégrader la sélectivité.

Lire la suite

Acquity UPC2 Torus : une nouvelle génération de colonnes pour la SFC

En 2012 Waters introduit le système UPC²™ et une gamme de colonnes dédiées à la chromatographie par fluide supercritique (SFC) : les colonnes Acquity UPC²™. Aujourd’hui une nouvelle génération de colonne voit le jour : les colonnes Acquity UPC² Torus™.

Silice BEHLes 4 colonnes historiques, toujours disponibles, sont les Acquity UPC² BEH, BEH-2-Ethylpyridine, HSS C18 SB (StableBond) et CSH Fluorophényl. Les particules BEH (Bridged Ethylene Hybrid) contiennent des ponts éthane qui forment avec la silice une phase hybride de polyethoxysilane. Les phases BEH et HSS (High Stenght Silica), dites de deuxième génération, sont présentées comme très robustes et résistantes à de très hautes pressions (jusqu’à 15000 psi). La silice CSH (Charged Surface Hybrid), assimilée à une troisième génération de la technologie de particules hybrides, est une BEH à laquelle ont été ajoutées des charges de surface. Il faut noter que ces trois bases de silice ainsi que les différents greffages (à l’exception de l’EP qui est unique à la gamme Acquity UPC²) sont disponibles sur des colonnes pour l’UHPLC et HPLC.

Les colonnes Acquity UPC² Torus (appelées par la suite Torus) sont quant à elles toutes composées d’une base de silice BEH modifiée par une première étape de greffage hydrophile (-CH2-CH2-CH2-O-CH2-CHOH-CH2OH) pour contrôler les caractéristiques de rétention et minimiser les interactions superficielles. Puis vient une seconde étape de greffage qui confère les propriétés de sélectivité. Les groupements disponibles [2-Picolylamine (Torus 2-PIC), Diéthylamine (Torus DEA), 1-Aminoanthracène (Torus 1-AA) et Diol (Torus Diol)] sont inédits et spécifiques à la gamme Torus, ils ne sont donc pas disponibles en UHPLC et HPLC.

Lire la suite

Les colonnes HPLC à noyaux durs peuvent-elles vraiment rivaliser avec les performances de l’UHPLC ?

En première intention, nous utilisons systématiquement l’UHPLC pour développer les méthodes de séparation en chromatographie liquide. Cependant, nous sommes régulièrement obligés de transférer ces méthodes en conditions HPLC pour les adapter à l’équipement disponible chez nos clients. A cette occasion, le choix de la colonne et les performances associées alimentent les discussions techniques et aboutissent immanquablement à la questions suivante:
Jusqu’où les colonnes modernes (noyaux durs en particulier) utilisables à moins de 450-500bars peuvent rivaliser avec les performances de l’UHPLC ?
Pour apporter des éléments de réponse, nous avons comparé 8 colonnes (1 UHPLC et 7 HPLC) lors de la mise au point d’une méthode d’analyse de 2 principes actifs pharmaceutiques et de leurs 4 impuretés. Ils nous a semblé intéressant d’analyser ces résultats hors du contexte de l’étude afin d’apporter des éléments comparatifs entre les différentes colonnes testées.

Description des 8 colonnes

photo tableau

La méthode développée a été déclinée sur chaque colonne en tenant compte des paramètres géométriques. La quantité injectée, la programmation du gradient et le débit ont donc été adaptés.

chromatoPour évaluer la performance de chaque colonne, nous avons retenu   4 critères : la moyenne des 6 facteurs de symétrie, la moyenne des largeurs à la base des 6 pics, la moyenne des 5 résolutions et la moyenne des 6 nombres de plateaux théoriques par unité de longueur. Nous avons ensuite utilisé une fonction de désirabilité (Derringer et Suich) pour trouver le meilleur compromis sur ces 4 paramètres.

tableau desirab

Dans notre cas nous avons choisi pour chaque critère une fonction linéaire variant entre les bornes 0 (valeur la plus petite de la collection pour le critère considéré) et 1 (valeur la plus grande de la collection pour le critère considéré).

graph

 

On obtient ainsi pour chaque colonne 4 valeurs de désirabilité correspondant aux 4 critères retenus.

 

 

desirabilite

Le score d’une colonne est obtenu en calculant la désirabilité globale comme la moyenne géométrique des désirabilités individuelles de chaque critère pour la colonne considérée.

graph global

Les valeurs des désirabilités des quatre critères étudiés sont homogènes sur les 5 premières colonnes. Cette homogénéité n’est plus observée sur les trois autres colonnes dont la désirabilité globale est inférieure à 0,5. On peut noter une très bonne performance des colonnes à noyau dur. Les trois colonnes de trois marques différentes ont des résultats très proches avec des désirabilités globales supérieures à 0,8 et comparables à celle obtenue sur la colonne UHPLC (Acquity CSH C18).

Ces résultats ont été obtenus pour une méthode d’analyse et une série de composés particuliers, il serait donc hasardeux de trop généraliser ces conclusions. Néanmoins cet exemple montre que les colonnes à noyau dur peuvent être une alternative aux méthodes UHPLC pour les laboratoires qui ne possèdent pas l’équipement et qui n’ont pas de contraintes fortes sur la durée d’analyse.

 

 

Analyses cliniques : L’intérêt des mesures quantitatives en cosmétique

Citation

Vu dans Premium Beauty News:

« Comment mesurer les effets d’une formule cosmétique ou simplement d’un actif donné ? Parmi les multiples solutions disponibles, la plateforme de protéomique quantitative haute résolution développée par la société française Phylogene…

La plateforme MS Phylogene utilise pour cela une configuration originale de spectrométrie de masse couplée à la nano-chromatographie liquide haute pression (nanoLC-MS/MS)… »

Lire la suite

 

Spectrométrie d’Absorption Atomique Haute Résolution (SAA-HR)

instrument

Analytik-Jena, fabricant européen d’instruments de spectroscopie optique et d’analyseurs élémentaires propose un Spectromètre d’Absorption Atomique Haute Résolution (SAA-HR). L’originalité de cet instrument (ContrAA700) réside dans son système optique haute résolution (moins de 2 picomètres à 200nm) ayant fait l’objet d’un brevet de l’ISAS (Institut d’optique de Berlin).

schéma principe

Le banc optique est monté sur un châssis en métal usiné avec une très grande précision mécanique et positionné verticalement dans l’appareil. La performance obtenue s’appuie essentiellement sur un double monochromateur à réseau échelle avec une focale de 400 mm, couplé à une lampe xénon de 300w à spectre continu. Cette lampe est à haute pression [50  bars] et micro arc  très chaud [200µm et plus de 10 000°K].  Système Optique ContrAA700

Lire la suite