Intérêt de la chromatographie en phase liquide bidimensionnelle à piège

A l’occasion du 12ème  congrès francophone de l’AFSEP sur les sciences séparatives et les couplages, nous avons réalisé un poster qui présente quelques applications de la chromatographie liquide bidimensionnelle à piège. Elles confirment l’intérêt majeur de cette technique, en particulier dans le développement  pharmaceutique.

Poster LC2D-F-V1

LC-2D Heart-Cutting: Particularité du système Waters

La chromatographie liquide à 2 dimensions n’est pas une technique nouvelle mais plusieurs constructeurs proposent aujourd’hui des configurations « clés en mains » basées des (2) systèmes de chromatographie liquides classiques auxquels ont été adjoint un jeu de vannes et une boucle de piégeage. Nous vous présentons ici le fonctionnement (et une série de tests) d’une configuration Waters qui, à notre sens,  propose un système original comprenant 3 pompes (au lieu de 2 – une pour chaque dimension) et une cartouche (ou colonne) de piégeage (au lieu d’une boucle constituée d’un tube capillaire en acier)

Le fonctionnement (LC2D-Fonctionnement)  est finalement assez simple, les 3 pompes alimentent 3 circuits qui, en fonction de la position des vannes, vont s’interconnecter pour donner les 4 phases du processus d’analyse.

Intérêt de la chromatographie en phase liquide bidimensionnelle

A l’occasion du 11ème  congrès francophone de l’AFSEP sur les sciences séparatives et les couplages, Amélie D’Attoma a présenté un poster qui, de notre point de vue résume très bien les potentialités de la chromatographie liquide bidimensionnelle. Avec l’autorisation des auteurs, nous relayons donc ici ces travaux qui peuvent modifier l’approche des développements contraints par des méthodes déjà déposées et/ou utilisées en contrôle.

SEP15-Poster-LC2D-compatibilitéMS

Les colonnes HPLC à noyaux durs peuvent-elles vraiment rivaliser avec les performances de l’UHPLC ?

En première intention, nous utilisons systématiquement l’UHPLC pour développer les méthodes de séparation en chromatographie liquide. Cependant, nous sommes régulièrement obligés de transférer ces méthodes en conditions HPLC pour les adapter à l’équipement disponible chez nos clients. A cette occasion, le choix de la colonne et les performances associées alimentent les discussions techniques et aboutissent immanquablement à la questions suivante:
Jusqu’où les colonnes modernes (noyaux durs en particulier) utilisables à moins de 450-500bars peuvent rivaliser avec les performances de l’UHPLC ?
Pour apporter des éléments de réponse, nous avons comparé 8 colonnes (1 UHPLC et 7 HPLC) lors de la mise au point d’une méthode d’analyse de 2 principes actifs pharmaceutiques et de leurs 4 impuretés. Ils nous a semblé intéressant d’analyser ces résultats hors du contexte de l’étude afin d’apporter des éléments comparatifs entre les différentes colonnes testées.

Description des 8 colonnes

photo tableau

La méthode développée a été déclinée sur chaque colonne en tenant compte des paramètres géométriques. La quantité injectée, la programmation du gradient et le débit ont donc été adaptés.

chromatoPour évaluer la performance de chaque colonne, nous avons retenu   4 critères : la moyenne des 6 facteurs de symétrie, la moyenne des largeurs à la base des 6 pics, la moyenne des 5 résolutions et la moyenne des 6 nombres de plateaux théoriques par unité de longueur. Nous avons ensuite utilisé une fonction de désirabilité (Derringer et Suich) pour trouver le meilleur compromis sur ces 4 paramètres.

tableau desirab

Dans notre cas nous avons choisi pour chaque critère une fonction linéaire variant entre les bornes 0 (valeur la plus petite de la collection pour le critère considéré) et 1 (valeur la plus grande de la collection pour le critère considéré).

graph

 

On obtient ainsi pour chaque colonne 4 valeurs de désirabilité correspondant aux 4 critères retenus.

 

 

desirabilite

Le score d’une colonne est obtenu en calculant la désirabilité globale comme la moyenne géométrique des désirabilités individuelles de chaque critère pour la colonne considérée.

graph global

Les valeurs des désirabilités des quatre critères étudiés sont homogènes sur les 5 premières colonnes. Cette homogénéité n’est plus observée sur les trois autres colonnes dont la désirabilité globale est inférieure à 0,5. On peut noter une très bonne performance des colonnes à noyau dur. Les trois colonnes de trois marques différentes ont des résultats très proches avec des désirabilités globales supérieures à 0,8 et comparables à celle obtenue sur la colonne UHPLC (Acquity CSH C18).

Ces résultats ont été obtenus pour une méthode d’analyse et une série de composés particuliers, il serait donc hasardeux de trop généraliser ces conclusions. Néanmoins cet exemple montre que les colonnes à noyau dur peuvent être une alternative aux méthodes UHPLC pour les laboratoires qui ne possèdent pas l’équipement et qui n’ont pas de contraintes fortes sur la durée d’analyse.

 

 

Elaboration et optimisation de méthodes chromatographiques: DryLab® vs Fusion AE™ LC Method Development (2)

logo drylab

Dans la série de nos papiers sur les logiciels d’optimisation en chromatographie liquide, un article* très intéressant de l’équipe du Dr Molnár à paraître dans la revue LC-GC, nous permet de comparer deux des principaux logiciels disponibles : DryLab® et Fusion AE™ LC Method Development.

s-matrix-logo

L’avènement des principes de « Quality by Design » (QbD) et la généralisation de la sous-traitance ont fait émerger de nouvelles problématiques dans le monde de la chromatographie. Elles peuvent se résumer en deux points : la prédiction de paramètres critiques (QbD) et la robustesse des méthodes d’analyse en vue de leurs transferts inter-laboratoires. Une des possibilités pour répondre à ces problématiques est d’utiliser des logiciels de modélisation. Il est donc utile d’identifier les deux familles de logiciels qui se partagent le marché.

On peut en effet distinguer d’une part les logiciels d’optimisation de méthodes et de modélisation qui s’appuient sur les lois théoriques chromatographiques (à titre d’exemple, on peut citer le logiciel DryLab®, développé par l’institut Molnár) et, d’autre part, des logiciels de plans d’expériences.

Lire la suite