Colonnes Core-shell: une offre pléthorique ! (3)

Depuis la parution de notre post du 08-août-2013, un certain nombre de nouveautés sont venues  grossir les rangs des colonnes Core-shell ou noyaux durs que l’on peut trouver chez de nombreux fournisseurs. Pour essayer d’y voir un peu plus clair sur l’ensemble de l’offre et faciliter les comparaisons, nous avons mis à jour le recensement des fournisseurs, noms commerciaux, granulométries, types de phase et dimensions.Fabriquants

Après l’entrée de Waters dans le monde des colonnes à noyaux durs avec ses colonnes Cortecs™, et l’élargissement de la gamme Kinetex™ de Phenomenex, c’est au tour de Perkin Elmer d’entrer dans la danse avec sa gamme de colonne Brownlee SPP™ de 2.7µm (avec des greffages courants C8, C18, ES-C18) dans laquelle on relève trois dimensions originales: une C8 et une C18 de 4.6 x 20 mm et une C18 de 3 x 20mm. Les Brownlee SPP™ comprennent également des greffages plus  particuliers comme les HILIC, PFP, Phenyl-Hexyl et RP-Amide. Pour ces derniers, pas de plus par rapport aux colonnes des autres fournisseurs.

Chez Interchim, la gamme Halo™ s’agrandit, elle propose désormais pour les 2.7µm des ES-18 de diamètre 2.1, 3 et 4.6 mm de 20 à 250 mm de longueur. Elle rejoint également les Ascentis™  (Supelco-Sigma Aldrich) pour les colonnes ES-Cyano en proposant en plus une longueur de 250 mm. On remarque également des colonnes de granulométries un peu atypiques 3.4 et 4.7µm.

Lire la suite

Intérêt de la SFC pour l’analyse de composés aromatiques halogénés

Nous avons évalué l’intérêt d’une méthode SFC-MS (Supercritical Fluid Chromatography Mass Spectrometry) pour la recherche de composés aromatiques halogénés, impuretés d’un intermédiaire de synthèse d’un principe actif pharmaceutique.

La SFC est une technique de séparation chromatographique où la phase mobile est un fluide porté à l’état supercritique ou subcritique. On utilise couramment le CO2 car son point critique est facilement accessible (31,0°C et 73,8 bars). La phase stationnaire, contenue dans une colonne, peut être constituée de particules solides de granulométrie fine (silice ou graphite poreux par exemple), ou être chimiquement modifiée comme les phases utilisées en chromatographie liquide.

Nous avons développé une méthode sur un système UPC2™ (Waters) couplé à une détection masse (quadripole avec source electrospray).
4 facteurs ont été étudiés : la nature du co-solvant (acétonitrile, méthanol éthanol), le gradient de phase mobile (co-solvant/CO2), la température de colonne et la nature de la colonne (Éthyle pyridine, C18, silice, fluorophenyl) sur la base de trois plans d’expériences définit à partir du logiciel d’optimisation Fusion™ (S-Matrix®). Les réponses étudiées sont le nombre de pics, la résolutions des pics et le temps de rétention du dernier pic.
Lire la suite

Analyse d’acides gras par SFC-MS (Supercritical Fluid Chromatography Mass Spectrometry)

Dans une note d’applicationpubliée en juillet 2013, Waters® a présenté des travaux sur le développement d’une méthode de dosage d’une série de corps gras par SFC-MS (Supercritical Fluid Chromatography Mass Spectrometry).

La SFC est une technique de séparation chromatographique où la phase mobile est un fluide porté à l’état supercritique ou subcritique. On utilise couramment le CO2 car son point critique est facilement accessible (31,0°C et 73,8 bars). La phase stationnaire, contenue dans une colonne, peut être constituée de particules solides de granulométrie fine (silice ou graphite poreux par exemple), ou être chimiquement modifiée comme les phases utilisées en chromatographie liquide.

La mise en oeuvre de cette technique au laboratoire nous a permis d’obtenir la séparation rapide de 4 acides gras saturés (à titre d’exemple, nous avons choisi d’étudier l’acide laurique C12:0, l’acide myristique C14:0, l’acide palmitique C16:0 et l’acide stéarique C18:0) en s’affranchissant de l’étape de dérivatisation habituellement pratiquée en CPG (Chromatographie en Phase Gazeuse) pour l’analyse des acides gras.

Chromato

Nous retenons particulièrement de cette note l’utilisation d’un co-solvant acidifié (méthanol-acide formique 0.1%) qui permet d’utiliser un mécanisme de suppression d’ion (habituel en chromatographie liquide) et d’un make-up de méthanol alcalinisé (ammoniac ou acétate d’amonium dans notre cas) qui rend possible une détection en masse par un électrospray négatif.

La méthode présentée dans cette note d’application est donc aisément transposable dans un laboratoire disposant de l’UPC² couplé à un spectromètre de masse et pourrait être déclinée à d’autres composés ionisables.

1 : Fast and Simple Free Fatty Acids Analysis Using UPC²/MS, Giorgis Isaac et al., Application note, Waters Corporation, Manchester, UK.

Colonnes Core-shell: une offre pléthorique ! (2)

Depuis la parution de notre post du 4.06.2012 , un certain nombre de nouveautés sont venues  grossir les rangs des colonnes Core-shell ou noyaux durs que l’on peut trouver chez de nombreux fournisseurs. Pour essayer d’y voir un peu plus clair sur l’ensemble de l’offre et faciliter les comparaisons, nous avons mis à jour le recensement des fournisseurs, noms commerciaux, granulométries, types de phase et dimensions.

fabricants core-shell-2Grand absent du monde des colonnes à noyaux durs, Waters est enfin rentré dans la danse en proposant ses Core-shell : les Cortecs®.
Waters a fait le choix de la performance en ne proposant que des colonnes de granulométrie 1,6µm. L’HPLC est donc totalement mise de côté, en effet, ces colonnes ne pourront pas être utilisés sur des systèmes haute pression classiques. Seuls les détenteurs de systèmes ultra-haute pression (UHPLC) pourront utiliser les Cortecs. Jusqu’à présent, seul Phenomenex proposait des colonnes à noyaux durs sub-2µm. Pour le moment, 3 greffages sont disponibles chez Waters (C18, C18+ pour la séparation de composés basiques et Hilic).

Lire la suite

Utilisation d’un plan d’expériences pour la mise au point d’analyses par SFC

Nous avons déjà présenté les résultats de travaux en SFC (Supercritical Fluid Chromatography) sur la recherche des substances apparentées du Misoprostol (post du 18 avril 2013). Ces résultats ont été obtenus à partir de plans d’expériences dont la mise en oeuvre est  détaillée dans cet article.

Jacques Goupy1, a beaucoup publié sur cette science de l’organisation des essais qu’il définit ainsi :
« le but de cette nouvelle science est l’optimisation du choix des essais et celui de leur enchaînement au cours de l’expérimentation. (…) ce but peut être atteint à condition que l’expérimentateur se conforme à une méthode rigoureuse et qu’il accepte d’abandonner certaines habitudes. Lorsqu’il aura apprécié la puissance et le bien-fondé de cette nouvelle technique, il en deviendra un adepte fervent et un chaud défenseur. »

Pour générer un plan d’expériences, il convient de définir des facteurs dont on étudiera au moins 2 niveaux (haut et bas). Le nombre et la nature des expériences à réaliser sont déterminés par construction matricielle et dépendent du nombre de facteurs et du nombre de niveaux retenus. Chaque expérience conduit à une ou plusieurs réponses à partir desquelles il est possible d’établir un modèle et donc de calculer les valeurs des facteurs pour lesquelles on obtient la (les) réponse (s) optimale (s).

Dans notre cas, les plans d’expériences sont construits en utilisant le logiciel Fusion™ de S-Matrix® initialement conçu pour la chromatographie liquide (HPLC/UHPLC) et les analyses sont conduites sur un système UPC2™ (Waters®).

.

Lire la suite