Analyse de filtres solaires par SFC (Supercritical Fluid Chromatography)

Dans la continuité de travaux présentés lors d’une journée AFSEP (4 mars 2010) par Eric Lesellier, nous proposons ici la séparation de six filtres solaires. Ces molécules, très utilisées en cosmétique et dermatologie sont habituellement dosées par des méthodes UHPLC phase inverse. Nous nous intéressons à la possibilité d’une méthode alternative en SFC facilement utilisable en analyse de routine.

Nous avons développé une méthode sur un système UPC2™ (Waters) et une colonne Kinétex C18 – 100 x 4,6 mm de granulométrie 2,6µm (Phenomenex).
Le choix d’une colonne Core-shell  permet de travailler avec des diamètres de particules supérieurs tout en conservant une efficacité comparable aux colonnes sub-2µm.
L’augmentation de la granulométrie diminue la perte de charge dans la colonne et élargit les possibilités d’utilisation d’une quantité importante de co-solvant sans dépasser la limite de pression admissible par le système (450 bars).

Nous avons étudié 4 facteurs : la nature du co-solvant (acétonitrile ou méthanol), le gradient de phase mobile (co-solvant/CO2), le débit de phase mobile et la température de colonne sur la base d’un plan d’expérience définit à partir du logiciel d’optimisation Fusion™ (S-Matrix®). Les réponses étudiées sont le nombre de pics, la symétrie des pics et le temps de rétention du dernier pic.

Lire la suite

Advances in Supercritical Fluid Chromatography

See on Scoop.itAnalyses Physico-chimiques

A revival of supercritical fluid chromatography (SFC) has been observed recently. SFC has repeatedly enabled fast and efficient separations, and in some cases has even outperformed high performance liquid chromatography (HPLC)…

 

Katrijn De Klerck, Debby Mangelings et Yvan Vander Heyden nous livrent une revue très intéressante sur les progrès de la chromatographie en phase supercritique.
Nous retenons particulièrement:

  • Les possibilités de la zone sub-critique insuffisamment explorées
  • L’utilisation d’additifs acides ou basiques
  • L’utilisation de colonnes core-shell qui reste largement à documenter
  • Le déficit d’applications publiées en séparation non chirale dont souffrent les derniers instruments mis sur le marché (UPC2- Waters ou  1260 Infinity Hybrid SFC/UHPLCAgilent)

See on www.chromatographyonline.com

Analyse de composés génotoxiques (haloéthanes) par SFC (Supercritical Fluid Chromatography)

Nous avons évalué l’intérêt de la Supercritical Fluid Chromatography (SFC) ou Chromatographie en Phase Supercritique (CPS) pour l’analyse d’haloéthanes génotoxiques.

Photo UPC² de WatersLa SFC est une technique de séparation chromatographique où la phase mobile est un fluide porté à l’état supercritique ou subcritique. On utilise couramment le CO2 car son point critique est facilement accessible. La phase stationnaire, contenue dans une colonne, peut être constituée de particules solides de granulométrie fine (silice ou graphite poreux par exemple), ou être chimiquement modifiée comme les phases utilisées en chromatographie liquide.

Les 1,2-dibromoéthane et 1-bromo-2-chloroéthane sont des composés génotoxiques qu’il faut donc pouvoir rechercher et quantifier. La chromatographie gazeuse (CPG) avec injection en espace de tête est une solution possible. Cependant, le caractère thermolabile de ces haloéthanes nécessite une optimisation pointue de la température et du temps d’incubation pour éviter leur dégradation.  La mise en œuvre de cette technique est donc assez délicate.

La chromatographie en phase supercritique pourrait permettre de s’affranchir de ce problème. En effet cette technique permet d’analyser des composés en solution sans  les chauffer. Les propriétés de diffusibilité particulières du CO2 supercritique permettent la séparation de composés de structure très proches.

Lire la suite

Colonnes sub 2 µm: poreuse ou core-shell ! (suite)

  

Comme suite à l’article du 13 juin 2012 dans lequel nous avions présenté les résultats de la comparaison d’une colonne core-shell Kinetex™ PFP 100 x 2.1 mm 1.7 µm (Phenomenex), et d’une colonne poreuse Acquity™ PFP 100 x 2.1 mm 1.8 µm (Waters) pour l’analyse UHPLC d’un échantillon d’oligosaccharide thérapeutique (C95H143N11O59S8Na8 – Mw = 2823 g/mol), nous avons étendu le test à 3 autres colonnes poreuses:

- Pinnacle™ PFP Propyl 100 x 2.1 mm 1.7 µm (Restek)
- Hypersil Gold™ PFP 100 x 2.1 mm 1.9 µm (Thermo)
- ACE Excel 2™ C18-PFP 100 x 2.1 mm 2.0 µm (AIT)

Les conditions d’analyses sont identiques pour toutes les colonnes, détection UV 244 nm, gradient d‘élution Méthanol/Tampon de 10 min.

Les colonnes core-shell utilisées en chromatographie à Fluide Supercritique

 

L’efficacité en chromatographique liquide a été spectaculairement améliorée par l’introduction des particules de diamètre inférieur à 2 micron utilisées en UHPLC et par le développement récent des particules à noyau dur superficiellement poreuses (core-shell).
Un article d’ E. Lesellier paru dans Journal of chromatography  décrit l’association de ces dernières générations de colonnes avec la chromatographie à fluide supercritique qui
permet d’accroitre encore l’efficacité de sépartion.
En effet les phases mobiles constituées de fluides à l’état supercritique ont des viscosités très inférieures aux phases mobiles liquides utilisées HPLC ou UHPLC. Elle conduisent à une meilleure efficacité théorique avec des baisses significatives de la pression. Il est donc possible d’utiliser des débits unitaires beaucoup plus élevés ou des colonnes beaucoup plus longues.
Le comportement cinétique des colonnes à noyau dur a été étudié en fonction du débit, de la pression et de la température, sur l’analyse d’une série d’alkylbenzènes avec 10% de méthanol ou d’acétonitrile dans le CO2. Les résultats ont été comparés aux particules entièrement poreuses classiques.

Une efficacité supérieure a été obtenue avec les nouvelles particules à noyau dur ce qui montre leur grand intérêt pour la chromatographie en fluide supercritique.
Cependant, des comportements cinétiques étonnants, qui favorisent l’efficacité des composés les plus retenus, sont observés. Ces comportements semblent dépendre du temps de séjour des composés dans la colonne, c’est à dire du débit de la phase mobile, et pourraient être expliqués par un gradient de température radial dans la colonne.

Source : E. Lesellier . Efficiency in supercritical fluid chromatography with different superficially porous and fully porous particles ODS bonded phases. Journal of Chromatography A,1228 (2012) 89-98