Chaleur de friction : avantage aux particules Core-shell

En chromatographie liquide, le déplacement de la phase mobile dans la colonne (contenant des particules fines tassées) provoque un dégagement de chaleur appelée chaleur de friction. La quantité de chaleur augmente avec la vitesse de la phase et donc le débit.

Photo blog

La chaleur de friction créé un gradient de température dans la section de la colonne, ce qui a pour conséquence de provoquer un élargissement des pics.

Il est donc possible de conserver l’efficacité de la colonne à débit élevé en améliorant la
dissipation thermique dans la phase mobile (en utilisant une plus grande proportion d’eau dans l’éluant par exemple) et / ou en augmentant la dissipation dans la phase stationnaire (en utilisant des particules plus denses par exemple). Les particules superficiellement poreuses (Core-Shell) démontrent clairement le potentiel de cette dernière option.

Des travaux ont été menés par F . Gritti et G. Guiochon afin de comparer des particules sub-2µm entièrement poreuses versus des particules à noyau solide, respectivement des particules 1,7µm BEH-C18 (Waters) et des particules 1,7µm Kinétex C18 (Phénomenex). Ils ont constaté qu’en accélérant le débit de phase mobile, la hauteur de plateau théorique augmentait moins vite pour les particules à noyau dur . Cela est dû à la plus grande conductivité thermique de ces particules constituées à 40% d’un noyau solide.

Une autre conséquence de la conductivité thermique de ces particules est qu’elle diminue le gradient radial de température qui se créé dans la colonne. Certains constructeurs (Thermo Fisher en particulier) revendiquent la maîtrise de ce phénomène sur leurs derniers systèmes chromatographiques.

Si l’intérêt des particules à noyau dur n’est plus à démontrer pour les utilisateurs de systèmes chromatographie liquide, on peut attribuer une partie de leur efficacité à leurs propriétés thermiques. Une question demeure : ces particules vont-elles à terme supplanter complètement les colonnes poreuses ?

Source :  F. Gritti et G. Guiochon, Mass transfer resistance in narrow-bore columns packed with 1,7µm particles in very high pressure liquid chromatography, J. Chrom A, 1217 (2010) 5069-5083

Les colonnes HPLC à noyaux durs peuvent-elles vraiment rivaliser avec les performances de l’UHPLC ?

En première intention, nous utilisons systématiquement l’UHPLC pour développer les méthodes de séparation en chromatographie liquide. Cependant, nous sommes régulièrement obligés de transférer ces méthodes en conditions HPLC pour les adapter à l’équipement disponible chez nos clients. A cette occasion, le choix de la colonne et les performances associées alimentent les discussions techniques et aboutissent immanquablement à la questions suivante:
Jusqu’où les colonnes modernes (noyaux durs en particulier) utilisables à moins de 450-500bars peuvent rivaliser avec les performances de l’UHPLC ?
Pour apporter des éléments de réponse, nous avons comparé 8 colonnes (1 UHPLC et 7 HPLC) lors de la mise au point d’une méthode d’analyse de 2 principes actifs pharmaceutiques et de leurs 4 impuretés. Ils nous a semblé intéressant d’analyser ces résultats hors du contexte de l’étude afin d’apporter des éléments comparatifs entre les différentes colonnes testées.

Description des 8 colonnes

photo tableau

La méthode développée a été déclinée sur chaque colonne en tenant compte des paramètres géométriques. La quantité injectée, la programmation du gradient et le débit ont donc été adaptés.

chromatoPour évaluer la performance de chaque colonne, nous avons retenu   4 critères : la moyenne des 6 facteurs de symétrie, la moyenne des largeurs à la base des 6 pics, la moyenne des 5 résolutions et la moyenne des 6 nombres de plateaux théoriques par unité de longueur. Nous avons ensuite utilisé une fonction de désirabilité (Derringer et Suich) pour trouver le meilleur compromis sur ces 4 paramètres.

tableau desirab

Dans notre cas nous avons choisi pour chaque critère une fonction linéaire variant entre les bornes 0 (valeur la plus petite de la collection pour le critère considéré) et 1 (valeur la plus grande de la collection pour le critère considéré).

graph

 

On obtient ainsi pour chaque colonne 4 valeurs de désirabilité correspondant aux 4 critères retenus.

 

 

desirabilite

Le score d’une colonne est obtenu en calculant la désirabilité globale comme la moyenne géométrique des désirabilités individuelles de chaque critère pour la colonne considérée.

graph global

Les valeurs des désirabilités des quatre critères étudiés sont homogènes sur les 5 premières colonnes. Cette homogénéité n’est plus observée sur les trois autres colonnes dont la désirabilité globale est inférieure à 0,5. On peut noter une très bonne performance des colonnes à noyau dur. Les trois colonnes de trois marques différentes ont des résultats très proches avec des désirabilités globales supérieures à 0,8 et comparables à celle obtenue sur la colonne UHPLC (Acquity CSH C18).

Ces résultats ont été obtenus pour une méthode d’analyse et une série de composés particuliers, il serait donc hasardeux de trop généraliser ces conclusions. Néanmoins cet exemple montre que les colonnes à noyau dur peuvent être une alternative aux méthodes UHPLC pour les laboratoires qui ne possèdent pas l’équipement et qui n’ont pas de contraintes fortes sur la durée d’analyse.

 

 

En SFC : Colonnes poreuses ou noyau dur ?

De la même manière que nous nous étions intéressés à cette comparaison en UHPLC, nous présentons ici des résultats d’analyse de 4 acides gras saturés par SFC-MS (Supercritical Fluid Chromatography Mass Spectrometry) obtenus sur cinq colonnes.

Le mélange d’acides gras est composé des acides laurique C12:0, myristique C14:0, palmitique C16:0 et stéarique C18:0.
Les colonnes testées sont indifféremment utilisables en chromatographie liquide ou supercritique:

  • Colonnes à particules poreuses
    Aquity HSS C18 100 x 3 mm – 1,8 µm (Waters)
    ACE Excel 2 super C18 100 x 3 mm – 2 µm (AIT)
    XBridge 100 x 3 mm – 3,5 µm (Waters)
  • Colonnes à noyaux durs
    Kinetex C18 100 x 3 mm – 2,6 µm (Phenomenex)
    Nucleoshell RP18 100 x 3 mm – 2,7 µm (Macherey-Nagel)

Nous avons utilisé un système chromatographique UPC2™ (Waters) couplé à une détection masse (quadripôle avec source electro-spray). Pour chaque colonne, le débit et le gradient ont été adaptés à la granulométrie pour maintenir les conditions optimales de vitesse linéaire de la phase mobile.

chromatos

tableau

Comme attendu, les performances des colonnes poreuses s’améliorent avec la diminution de la granulométrie.
Par contre, il est plus étonnant  de constater que l’efficacité des 2 colonnes noyaux durs testées reste en deçà de celle des poreuses sub 2 µm et simplement comparable à celle d’une phase poreuse 3.5 µm (XBridge).

Nous n’avions pas observé cela jusqu’à présent en UHPLC. Le coefficient de diffusivité élevé du COà l’état supercritique est un des facteurs majeur expliquant les performances des colonnes sub 2µm dans cette expérience, il favorise le processus de transfert de masse entre les deux phases et a donc tendance à niveler cet avantage connu des colonnes core-shell.

Colonnes sub 2 µm: poreuse ou core-shell ! (suite)

  

Comme suite à l’article du 13 juin 2012 dans lequel nous avions présenté les résultats de la comparaison d’une colonne core-shell Kinetex™ PFP 100 x 2.1 mm 1.7 µm (Phenomenex), et d’une colonne poreuse Acquity™ PFP 100 x 2.1 mm 1.8 µm (Waters) pour l’analyse UHPLC d’un échantillon d’oligosaccharide thérapeutique (C95H143N11O59S8Na8 – Mw = 2823 g/mol), nous avons étendu le test à 3 autres colonnes poreuses:

- Pinnacle™ PFP Propyl 100 x 2.1 mm 1.7 µm (Restek)
- Hypersil Gold™ PFP 100 x 2.1 mm 1.9 µm (Thermo)
- ACE Excel 2™ C18-PFP 100 x 2.1 mm 2.0 µm (AIT)

Les conditions d’analyses sont identiques pour toutes les colonnes, détection UV 244 nm, gradient d‘élution Méthanol/Tampon de 10 min.

Dosage des conservateurs en HPLC: Colonnes Core-shell ou Colonnes poreuses!

Dans une note récente (TN-1095) Phenomenex propose une comparaison de 5 colonnes HPLC pour le dosage de 15 conservateurs.
Les analyses ont été effectuées à l’aide d’un système de HP 1100 LC (Agilent Technologies, Palo Alto, CA, USA) avec une limite en pression de 400 bar, équipé d’un détecteur UV. Les colonnes HPLC utilisées pour l’analyse sont les suivantes :

1. Kinetex XB-C18, 2.6 μm (Phenomenex, Inc., Torrance, CA, USA)
2. HALO C18, 2.7 μm (Advanced Materials Technology, Inc., MA, USA)
3. Poroshell 120 SB-C18, 2.7 μm (Agilent Technologies, Palo Alto, CA, USA)
4. Luna C18(2), 3 μm (Phenomenex, Inc., Torrance, CA, USA)
5. XSelect CSH C18, 3.5 μm (Waters Corporation, Milford, MA, USA)

Pour comparer les performances de ces colonnes, l’auteur a choisi de déterminer la capacité de pics qui permet de caractériser leur pouvoir de séparation c’est à dire le nombre maximal de pics pouvant être séparés avec une résolution donnée dans des conditions opératoires fixées.

Lire la suite